凡亿教育-小文
凡事用心,一起进步
打开APP
公司名片
凡亿专栏 | 开关电源的阻尼振荡
开关电源的阻尼振荡

前两期说了RCD电路,不可避免提到开关的尖峰。由此我想到了我们最常用的电路,Buck电路。

 

Buck振荡波形


Buck电路电感前面的SW波形,想必大家都测量过,总的来说,无非下面两种:

067e8fab71c1a6fb91583a24b8120e.jpg

不论是连续模式,还是断续模式,都会有上升尖峰或者是下降尖峰,无非是大小的问题。

如果我们拉开来看,尖峰可以看出来是一个振荡波形,频率很高。

或者更明显的,断续模式中,在电感电流降低为0时就开始振荡,幅度不小,并且频率也不高。

ffdb397540cb96de88a0a70c470871.jpg

对于新手来说,可能在心里打鼓:这个振荡莫不是有什么问题?

 

上面这些振荡,或是尖峰,要理解为什么长成这样?有没有问题?如何抑制?如果要详细了解来龙去脉,其实并不是很容易。

这些波形,本质上就是LC阻尼振荡,这一节我们先搞明白LC阻尼振荡的各种情况。

 

LC阻尼振荡


上面说的这些波形,产生的机理就是,在开关断开之前,电感或电容被充电。而在开关断开之后,电感或电容的能量需要释放,因此会找到电路中的寄生电容或是寄生电感,再结合电路中的等效电阻,组成了LC阻尼振荡。


Buck具体是如何构成LRC回路的,因为涉及到很多寄生参数,这个也不容易搞清楚,后面专门细说。

这节的主题就是LC阻尼振荡。

 

我们就以最简单的LRC串联电路来举例

bc78deadc1d9cb37f7cb7ca43ca6d0.jpg

这个电路其实在大学课程《电路分析》应该有学过(好像《信号与系统》这门课也有),就是一个二阶电路。

如果想再看一下理论分析,可以看看下面这个链接:

https://wenku.baidu.com/view/6c61d292a26925c52dc5bfc8.html


这个电路的波形分为四种情况,分别是:

e4ab94ab1c2e4c1ea40c4b999da71c.jpg

 最近get一个新技能,试着使用了一下LTspice仿真,感觉还不错,比Matlab方便吧。当然,也只能说明两个软件侧重点不一样吧,Matlab是数学工具,如果能用Matlab搞出下面的结果,理解肯定会更加的深入,但是难度更高吧。


下面来看下我做的LTspice仿真:

579d89e19371405de51e9c0a77e7aa.jpg

初始条件:L=10nH  C=10nF 初始电感电流I=1A,电容电压为0V。

根据公式2(L/C)^0.5求得临界阻尼电阻R=2Ω。


下面我们只改变电阻R,让R=4Ω,2Ω,1Ω,0.1Ω,0Ω,分别来看看波形:

9101419f315be2cc85b9be395a35c6.jpg

       从上图我们可以得到振荡频率:

我们对比R=0.1和R=0的波形,可以看到,振荡的周期(两个波峰的时间差)是一样的,都是62.8ns左右,其实这就等于LC电路的谐振频率。

bd9519224e17a4372d98094d82eb29.jpg


知道这个频率有什么用呢?

我们可以根据这个得到电路中总的电感或是电容多大。

实际应用中,我们通常可以用示波器量出振荡尖峰的频率,然后我们可以人为并上一个电容,这时尖峰频率肯定会发生变化,我们再用示波器测出来。

根据前后的频率,增加的电容容量,我们就可以算出寄生电容和电感是多大。

以下是某文档讲解的snuber电路(BUCK电路中常用于去尖峰)

43119029afec080f6f326627d19f17.jpg

现在应该这种方法的基本原理了吧。

 

本节内容到这里就结束了,主要是理论的,后面会使用LTspice仿真,研究下开篇说的几个振荡波形,感谢大家阅读。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表凡亿课堂立场。文章及其配图仅供工程师学习之用,如有内容图片侵权或者其他问题,请联系本站作侵删。
相关阅读
进入分区查看更多精彩内容>
精彩评论

暂无评论