凡亿专栏 | 如何区分TCP(虚电路)和UDP
课程
直播
文章
问答
类目筛选
EDA设计
硬件技术
EDA仿真
嵌入式
IC设计
人工智能
考试认证
结构设计
其他
如何区分TCP(虚电路)和UDP
电路之家
2017-01-01 00:00:00
1777
关注
(1)在传输方式上,虚电路服务在源、目的主机通信之前,应先建立一条虚电路,然后才能进行通信,通信结束应将虚电路拆除。而数据报服务,网络层从运输层接收报文,将其装上报头(源、目的地址等信息)后,作为一个独立的信息单位传送,不需建立和释放连接,目标结点收到数据后也不需发送确认,因而是一种开销较小的通信方式。但发方不能确切地知道对方是否准备好接收,是否正在忙碌,因而数据报服务的可靠性不是很高。 ?(2)关于全网地址:虚电路服务仅在源主机发出呼叫分组中需要填上源和目的主机的全网地址,在数据传输阶段,都只需填上虚电路号。而数据报服务,由于每个数据报都单独传送,因此,在每个数据报中都必须具有源和目的主机的全网地址,以便网络结点根据所带地址向目的主机转发,这对频繁的人―机交互通信每次都附上源、目的主机的全网地址不仅累赘,也降低了信道利用率。 ?(3)关于路由选择:虚电路服务沿途各结点只在呼叫请求分组在网中传输时,进行路径选择,以后便不需要了。可是在数据报服务时,每个数据每经过一个网络结点都要进行一次路由选择。当有一个很长的报文需要传输时,必须先把它分成若干个具有定长的分组,若采用数据报服务,势必增加网络开销。?(4)关于分组顺序:对虚电路服务,由于从源主机发出的所有分组都是通过事先建立好的一条虚电路进行传输,所以能保证分组按发送顺序到达目的主机。但是,当把一份长报文分成若干个短的数据报时,由于它们被独立传送,可能各自通过不同的路径到达目的主机,因而数据报服务不能保证这些数据报按序列到达目的主机。 ?(5)可靠性与适应性:虚
电路
服务在通信之前双方已进行过连接,而且每发完一定数量的分组后,对方也都给予确认,故虚电路服务比数据报服务的可靠性高。但是,当传输途中的某个结点或链路发生故障时,数据报服务可以绕开这些故障地区,而另选其他路径,把数据传至目的地,而虚电路服务则必须重新建立虚电路才能进行通信。因此,数据报服务的适应性比虚电路服务强。 ?(6)关于平衡网络流量:数据报在传输过程中,中继结点可为数据报选择一条流量较小的路由,而避开流量较高的路由,因此数据报服务既平衡网络中的信息流量,又可使数据报得以更迅速地传输。而在虚电路服务中,一旦虚电路建立后,中继结点是不能根据流量情况来改变分组的传送路径的。 ?综上所述,虚电路服务适用于交互作用,不仅及时、传输较为可靠,而且网络开销小。数据报服务5-06 设有一通信子网。若使用虚电路,则每一分组必须有3字节的分组首部,而每个网络结点必须为虚电路保留8字节的存储空间来识别虚电路。但若使用数据报,则每个分组要有15字节的分组首部,而结点就不需要保留路由表的存储空间。设每段链路每传1兆字节需0.01元,购买结点
存储器
的费用为每字节0.01元,而存储器的寿命为2年工作时间(每周工作40小时)。假定一条虚电路的每次平均使用时间为1000秒,而在此时间内发送200分组,每个分组平均要经过4段链路。
编辑:hfy
登录查看更多内容
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表凡亿课堂立场。文章及其配图仅供工程师学习之用,如有内容图片侵权或者其他问题,请联系本站作侵删。
相关阅读
电路之家
已关注
氢燃料电池乘用车瓶颈在哪里?
氢燃料电池乘用车瓶颈在哪里?-此前,氢燃料电池乘用车先发优势似乎都在国外企业。2014年12月,丰田汽车推出首款量产氢燃料电池轿车丰田Mirai。彼时,丰田汽车公司Mirai燃料电池车开发负责人田中义和称,丰田之所以在2014年底将Mirai推向市场,与日欧美等国对氢燃料电池汽车达成共识有关。同时,相比2008年,氢燃料汽车开发成本降低了95%。
2017-01-01 00:00:00
文章
电路之家
已关注
新型固定式储能金属氢电池将被用于空间站和哈勃望远镜
新型固定式储能金属氢电池将被用于空间站和哈勃望远镜-初创公司、技术供应商EnerVenue旨在将金属氢电池的一种变体投入固定式储能的商业化应用。这种金属氢电池被用于国际空间站和哈勃太空望远镜。
2017-01-01 00:00:00
文章
电路之家
已关注
电源设计中电容到底有多重要
电源设计中电容到底有多重要-在电源电路设计中我们往往忽略了电容的存在,其实,作为一款优秀的设计,电源设计应当是很重要的,它很大程度影响了整个系统的性能和成本。
2017-01-01 00:00:00
文章
电路之家
已关注
电池使用过程中负极衰减的原理及减少容量衰减的方法
析锂、电极表面钝化膜的增厚、可循环锂量的损失、活性物质结构的破坏等现象均可导致锂电池寿命的衰减 。其中,负极是引起电池容量衰减的主要因素。本文总结了电池使用过程中负极衰减的主要原理,并提出了几种减少容量衰减的方法。
2017-01-01 00:00:00
文章
电路之家
已关注
【金升阳直播】电源模块可靠性外围设计(DC/DC宽压篇)
【金升阳直播】电源模块可靠性外围设计(DC/DC宽压篇)-分享要点: 1、典型应用推荐与优势分析; 2、常见故障分析与规避方法; 3、DC/DC宽电压输入电源发展趋势。
2017-01-01 00:00:00
文章
进入分区查看更多精彩内容>
精彩评论
暂无评论
发布
暂无评论