现代的社会,航天事业正进行得如火如茶。经历了血的教训与洗礼,人们越来越重视可靠性工程的研究与探索。电子元器件可靠性是可靠性工程的基础,也是可靠性工程中最为复杂的工作。从生产,到二次筛选,再到装机调试和最后投入运用这一过程当中,电子元器件的可靠性保障都是十分重要的。小编儿今天主要汇总一下元器件二次筛选过程中的可靠性保障。二次筛选是元器件装机前可靠性的重要保障过程,但是二次筛选的不当操作和防护也能给电子元器件的运用留下隐患或者直接造成失效。所以,在二次筛选检测试验中,从环境保护、操作审查与小心操作、静电防护、DPA与FA等方面做好电子元器件的可靠性保障工作是十分关键的。环境对电子元器件的影响电子元器件都有一个运用环境要求,特别是温湿度、电应力和机械应力的要求。像温度传感器、热敏电阻这些对温度比较敏感的器件,在贮存和运转过程中,应该尽量贮存在常温条件下,运转时尽量避免在热阻较高、导热性能差的容器中进行运转。否则容易发生温度剧变导致器件失效或长时间的高温状态而导致器件热应力疲劳。对于电子元器件,一般应该轻取轻放,否则容易造成外形变形或尺寸变化。电子元器件在插入或拔出测试夹具时不能猛插猛取,否则会由于用力过大而造成机械损伤或机械应力疲劳;在保证接触良好的状态下,对器件管脚施加的应力应该越小越好。贮存湿度不能过高,否则容易发生管脚表面腐蚀或电性能恶化。QJ2227-92《航天用电子元器件贮存和超期复验要求》A2规定了电子元器件的有效贮存期和贮存环境,贮存的湿度越高,其有效贮存期就越短。另外,像光电器件类对辐射敏感的器件应该尽量远离辐射源,否则容易造成辐射损伤。
静电防护
静电来源:静电的来源比较广泛,日常生活中常见的如摩擦起电,感应生电,人体与尘埃。工业生产中,由于机械的运动,电磁感应等也容易产生静电。所以机械物品上也会存在静电荷。另外,由于能量量子的辐射与吸收,也会产生电荷。因为在材料中,特别是半导体材料,由于吸收了相应能量量子,使得价带上的电荷得以跃迁到导带上形成自由电荷。或许由于辐射能量量子而使得导带上的电荷跃迁到价带,减少了导带电荷而使得电荷不平衡。其示意图如下:
静电放电模型及分类介绍:当前国际上,静电放电大致可以归纳为三种主要模型:人体模型,机械模型,放电模型。人体模型等效电阻较大,机械模型等效电阻稍小,放电模型是指感应静电荷而产生放电,他可以包括带电器件模型、电场感应模型、带电芯片模型。随着纳米器件的兴起和半导体工艺向纳米级推进,放电模型对电子元器件的影响也将越来越突出和明显。静电放电级别按元器件类型和静电敏感度进行分类,根据GB1649-93《电子产品防静电放电控制大纲》可分为1级(0~1999V)、2级(2000V~3999V)和3级(4000V~15999V)。微波器件、离散型MOS场效应晶体管、声表面波(SAW)器件、结型场效应晶体管(JFETs)、电荷耦合器件(CCDs)、精密稳压二极管、运算放大器、薄膜电阻器、集成电路、使用1级元器件的混合电路、超高速集成电路(VHSIC)等一般均属于1级静电敏感元器件;试验数据确定为2级的元器件和微电路、精密电阻网络、使用2级元器件的混合电路、低功率双极型晶体管(Ptot<100mw,ic<100ma)等属于2级敏感元器件;试验数据确定为3级的元器件和微电路、ptot<1w或io<1a的小信号二极管、普通要求的硅整流器、光电器件、片状电阻等属于3级敏感元器件。<>根据不同防静电级别的元器件,要不同程度的提高防静电注意力,做好防静电措施。静电损伤与静电防护:静电损伤主要是场效应管的绝缘栅、电路的外围器件(保护二极管)、薄膜电阻器、金属化条等,损伤严重的直接会使器件击穿或毁坏器件,有些电路被损伤以后通过外观检查和电参数测试也不能暴露问题,损伤较轻的通过试验和电参数测试也未必能够显示出来,这就给器件的运用留下了隐患。静电损伤后,容易造成器件开路、短路、特性曲线恶化、反向电流加大、频率特性恶化等失效模式。所以,在二次筛选实验室,静电防护也是十分重要的。静电的防护,除了按照相关标准规范等的规定和要求进行防护外,还应该从静电的来源、静电泄放的条件等方面去考虑。DPA和FA在元器件可靠性中的作用破坏性物理分析(以下简称DPA)和失效分析(以下简称FA)是一项新兴工程,起源于二战后期。从20世纪50年代开始,国外就兴起了可靠性技术研究,而国内则是从改革开放初期开始发展。
失效分析(FA)
通过FA得到改进设计、工艺或应用的理论和思想。
通过了解引起失效的物理现象得到预测可靠性模型公式。
为可靠性试验(加速寿命试验、筛选)条件提供理论依据和实际分析手段。
在处理工程遇到的元器件问题时,为是否要整批不用提供决策依据。
通过实施FA的纠正措施可以提高成品率和可靠性,减少系统试验和运行工作时的故障,得到明显的经济效益。
破坏性物理分析(DPA)
程序设置不当造成电子元器件的检测失效;
极性接反造成元器件失效;
错误信号造成元器件失效;
电应力过冲造成元器件失效;
适配器误用造成电子元器件失效;
插拔方式不当造成机械应力失效;
在存放过程中误将某些有极性的元器件放反等。
暂无评论